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The behavior of the self-diffusion constant of Langevin particles interacting via a pairwise interaction is
considered. The diffusion constant is calculated approximately within a perturbation theory in the potential
strength about the bare diffusion constant. It is shown how this expansion leads to a systematic double
expansion in the inverse temperatureb and the particle densityr. The one-loop diagrams in this expansion can
be summed exactly and we show that this result is exact in the limit of smallb andrb constants. The one-loop
result can also be resummed using a semiphenomenological renormalization group method which has proved
useful in the study of diffusion in random media. In certain cases the renormalization group calculation predicts
the existence of a diverging relaxation time signaled by the vanishing of the diffusion constant, possible forms
of divergence coming from this approximation are discussed. Finally, at a more quantitative level, the results
are compared with numerical simulations, in two dimensions, of particles interacting via a soft potential
recently used to model the interaction between coiled polymers.
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I. INTRODUCTION

Transport properties of deeply cooled liquids may change
by several orders of magnitude when one reduces the tem-
perature[1]. Indeed, a liquid undergoing a deep quench be-
low its melting transition may stay in a metastable super-
cooled state. In this state, the relaxation time is much larger
than the experimental time scale, and the system is always
out of equilibrium. Experiments suggest that in “fragile”
glass formers, there is a temperatureT0 at which the relax-
ation time diverges. Even if the mere existence of a diver-
gence of the relaxation timet at finite temperature is still
controversial, the experimental data can be often fitted by the
so-called Vogel-Fulcher-Tammann lawt,expfA/ sT−T0dg.
Since such a glassy behavior has been observed in a wide
range of materials, there have been huge efforts dedicated to
computing the transport properties in supercooled liquids.
Among them, the mode coupling theory(MCT) [2–4] ap-
pears to give results and predictions which fit remarkably
well with data for many different systems[5]. However, de-
spite its successes, the derivation of MCT either from the
Mori-Zwanzig formalism[4] or from fluctuating hydrody-
namics[6] remains quite obscure, and systematic improve-
ments seem difficult to implement and control. Hence, with
the aim of understanding better the structure of the dynam-
ics, alternative methods of computing transport properties of
systems of many interacting particles such as supercooled
liquids are worth examining. In this paper, we will develop a
method to compute the long time self-diffusion constant
which allows systematic double perturbative expansions, in
the strength of the interaction and in the density of particles.
The approach is based on the Langevin dynamics forN par-
ticles with two-body interactions, though this approach may
be generalized easily to three-body interactions. Such Mar-
kovian Langevin dynamics can be invoked in liquids over
length and time scales where inertial effects become negli-

gible. The Langevin equation thus represents a coarse
grained image of the system and the effective parameters and
interactions used in the Langevin approach require micro-
scopic derivation. The Langevin approach also naturally de-
scribes the dynamics of colloids in solution[7], the Brown-
ian noise is induced by the solvent and the effective
interaction between particles is composed of a pairwise di-
rect interaction between the colloids plus additional hydro-
dynamic interactions induced via the solvent.

We consider the interacting set of Langevin equations for
particles X i interacting via a pairwise potentialVsX i −X jd
depending only on the distance between the particles at tem-
peratureT in D dimensions:

dX i
a

dt
= − lo

j

]Xi
aVsX i − X jd + hi

a. s1d

The units of time are chosen such that the white noise field
hi

a has the correlation function

khi
astdh j

bst8dl = 2kdi jd
abdst − t8d, s2d

where the angled brackets indicate averaging over the ther-
mal noise. The termk is thus the bare diffusion constant of
the particles in the absence of interactions. The fluctuation
dissipation theorem or Einstein relation implies thatl /k
=1/T. This system of equations can be used to describe a
colloidal system of interacting particles suspended in solu-
tion when hydrodynamic interactions are neglected. The ne-
glecting of hydrodynamic interactions is justified where the
direct two body interactionV is of much longer range than
the hydrodynamic interactions. A commonly cited example is
charged colloids in a solution when the Debye length is very
large with respect to the particle sizes.

The effective macroscopic diffusion constantke of par-
ticle i is defined by
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lim
t→`

kXi
2stdl = 2Dket. s3d

It is the aim of this paper to develop a technique for the
calculation ofke. There are two basic routes to calculateke.
The first is based on the direct calculation of the diffusion
constant[8–19]. The second is based on the calculation of
the modification of the response to a small external force on
a given particle due to the interaction with the other particles,
the so-called relaxation effect; the resulting value ofke is
then determined from the Einstein or fluctuation dissipation
relation [20–23]. One approach to studying the dynamics of
a tracer particle is to write an effective one particle Langevin
equation with a non-Markovian memory kernel, derived via
projection operator techniques[8–13,16,17,23,19]. This ker-
nel must then be computed by invoking approximation or
closure schemes such as mode coupling-like approximations
[15,16], cluster expansions[13], or weak coupling expan-
sions [8,17,18]. Other approaches are based on closure
schemes for the Smoluchowski equation[9–11,21,22], which
normally involve closing the hierarchy of equations for the
joint probability density functions by replacing, for instance,
the three body joint probability density function by its corre-
sponding Kirkwood superposition approximation. Both tech-
niques can be handled to produce results which are exact to
first order in the particle densityr [12–14,20,23].

The paper is organized as follows. In Sec. II we develop
the diagrammatic perturbation theory for the calculation of
the self-diffusion constant. In Sec. III the one-loop analysis
and its renormalization group resummation are developed
and the physical consequences of their predictions are dis-
cussed. In Sec. IV a brief comparison of the results of vari-
ous calculational schemes and numerical simulations is pre-
sented for the case of a soft potential. The bulk of the
discussion of the physics is to be found in Secs. III and IV
and in the Conclusion.

II. DIAGRAMMATIC EXPANSION

Here we use a technique based on a perturbative weak
coupling expansion of the Smoluchowski or Fokker-Planck
equation for theN particles in interaction. The form of this
perturbation expansion is identical to that used to calculate
the effective diffusion constant of a particle in a random
potential. We denote byPsx1,x2, . . . ,xN,td the probability
density function for the particle displacements from their
original positions att=0 at timet, that is to say the density of
hX istd−X is0d ; 1ø i øNj. We take initial conditionsX is0d
=xi

s0d where thexi
s0d are independently and uniformly distrib-

uted throughout the volumeV of the system. In principle one
could take other initial conditions for thexi

s0d, notably one
could take their equilibrium distribution. However, if the sys-
tem is ergodic then the resulting behavior of the diffusion
effective constant should be independent of this distribution.
The disorder induced by the random initial conditions shows
the link with diffusion in a random potential. The forward
Fokker-Planck or generalized Smoluchowski equation forP
is

] P

] t
= k¹2P + l ¹ · sP ¹ fd, s4d

where ¹ is the gradient operator onRDN where D is the
spatial dimension andN the number of particles. The poten-
tial f in this formalism is given by

fsx1,x2, . . . ,xNd = f0sx1 + x1
s0d,x2 + x2

s0d, . . . ,xN + xN
s0dd,

s5d

where

f0sx1,x2, . . . ,xNd = o
i, j

Vsxi − x jd. s6d

From here on we shall denote by the vectorx, without a
particle index, the global position vectorsx1,x2, . . . ,xNd in
RDN and by the vectork the corresponding Fourier vector
sk1,k2, . . . ,kNd. If one defines

P̃sk,sd =E
0

`

dtE
RDN

dx exps− st− ik ·xdPsx,td, s7d

it is straightforward to show thatP̃sk ,sd obeys

P̃sk,sd =
1

kk2 + s
−

l

kk2 + s
E

RDN

dq

s2pdNDk ·qf̃sqdP̃sk − q,sd.

s8d

We note that because of our choice of coordinates relative to
the initial conditions,Psx ,0d=dsxd and also

f̃sqd = expsiq ·xs0ddf̃0sqd. s9d

One has also that

f̃0sqd = s2pdsN−1dDc̃0sqd, s10d

with

c̃0sqd = o
i, j

Ṽsqiddsqi + q jd p
k¹hi,jj

dsqkd. s11d

Using these definitions one obtains the equation

P̃sk,sd =
1

kk2 + s
−

l

kk2 + s
E

RDN

dq

s2pdDk ·qc̃0sqd

3expsiq ·xs0ddP̃sk − q,sd. s12d

Equation(12) can be solved iteratively leading to the expan-
sion which is represented in Fig. 1. We note here that this
weak coupling expansion as it stands only makes sense for
potentials which are bounded asVsxd is treated as a small
perturbation. However the series can be resummed to obtain
physical results for unbounded(such as hard core) potentials.
In addition the behavior of soft potentials is of direct physi-
cal interest as they provide coarse grained descriptions of
coiled polymers[25], star polymers[26], and micelles[27]
in solvents.

Momentum is conserved at each vertex and the Feynman
rules are the following:
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Each solid line (horizontal) corresponds to the bare
Green’s function corresponding to the system of particles in
the absence of interactions

G0sk,sd =
1

kk2 + s
, s13d

wherek is the momentum in that line.
Each vertex(vertical wavy line) carries a factor

− lk ·qc0sqdexpsiq ·xs0dd, s14d

wherek is the ingoing momentum(from the left) andq is the
momentum flowing into the vertical wavy line.

Each momentumq flowing into a wavy line is integrated
over RDN with the measuredq / s2pdD.

We see that the ingoing and outgoing momentum on each
of the generated diagrams is not conserved. This is because
the spatial translational invariance of the system is not ex-
plicit. To study a spatially translational invariant system we
average over the initial positionxs0d throughout the volume
VN. We shall take uniform initial conditions although any
initial conditions which have the property of spatial transla-
tional invariance should give the same asymptotic(late time)
properties forGsk ,sd=kP̃sk ,sdl0. Here the angled brackets
with the 0 subscript indicate the average over the initial po-
sition vectorxs0d and is defined by

kAl0 =
1

VNE
VN

dxs0dAsxs0dd. s15d

In the limit of largeV this integration multiplies each dia-
gram by a factor ofs2pdNDdsovqvd /VN where theqv are all
the momenta flowing into the upward wavy lines in each
diagram at each vertexv. This momentum conservation en-
sures that the momentum flowing into each diagram is the
same as that flowing out and indicates the invariance by
translation in space of the system averaged over its initial
conditions. After taking this average over the diagrams in
Fig. 1 we obtain the diagrammatic expansion forGsk ,sd.
The Feynman rules are as before but with the following
modifications:

Each diagram carries an overall factor ofs2pdsN−1dD /VN.
There are onlyn−1 independent momenta for each dia-

gram ofn vertices by momentum conservation. Each of these
momenta is integrated with the measuredq / s2pdD as before.

The form of the perturbation expansion shown in Fig. 2
shows that one can writeGsk ,sd as

Gsk,sd =
1

kk2 + s
+

1

skk2 + sd2Dsk,sd. s16d

The termDsk ,sd can clearly be expressed in terms of one-
particle-irreducible diagrams. Diagrams which are one-
particle-reducible are those containing a bare Green’s func-
tion having a pure momentumk flowing through one of their
bare Green’s functions and can thus be factorized. The bare
Green’s function connecting two one-particle-irreducible dia-
grams is therefore 1/skk2+sd. If we denote the one-particle-
irreducible diagram contribution asSsk ,sd then

Gsk,sd =
1

kk2 + s
+

Ssk,sd
skk2 + sd2 +

Ssk,sd2

skk2 + sd3 + ¯ , s17d

which sums to give

Gsk,sd =
1

kk2 − Ssk,sd + s
. s18d

We now note that by the conservation of probability
Gs0,sd=1/s and we thus expect that for smalluk u,

Gsk,sd =
1

kk2 − k2Essd + s
, s19d

whereSsk ,sd<k2Essd. In the limit of smalluk u ands there-
fore

Gsk,sd =
1

fk − Es0dgk2 + s
. s20d

The effective diffusion constant for the particles is ex-
tracted using the fact that

2Dket = lim
t→`

kfX istd − xi
s0dg2l, s21d

where the angled brackets on the right-hand side above indi-
cate the average over the thermal noise and over the initial
conditions. We also have that

Gsk,sd =E
0

`

dt exps− stdKexpS− io
i

k i · fX istd − xi
s0dgDL .

s22d

For smalls in Laplace space we have

FIG. 1. Diagrammatic expansion forP̃sk ,sd.

FIG. 2. Diagrammatic expansion ofGsk ,sd (shown as a line
with a closed circle) obtained after averaging over initial particle
positions in the diagrammatic expansion shown in Fig. 1.
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E
0

`

dt exps− stdkfX istd − xi
s0dg2l < E

0

`

dt exps− std2Dket

=
2Dke

s2 s23d

and therefore, from Eq.(22), for smalls,

2Dke

s2 < − o
a=1

D U ]2

] ki
a2Gsk,sdU

k=0

. s24d

Now using Eq.(20) we obtain

ke = k − Es0d. s25d

The calculation of ke can therefore be evaluated from
Gsk ,0d. We may express the termEs0d as an expansion in
the number of verticesn in the diagram, we write

Es0d = o
n

En, s26d

where

En = lim
uk u→0

1

k2o
n

sk,0d, s27d

whereSnskd is the sum of one-particle-irreducible diagrams
with n vertices. From Fig. 2 we may write

Gsk,0d =
1

kk2 +
1

skk2d2o
n

Dnsk,0d, s28d

whereDnsk ,0d is the sum over all terms withn vertices and
not just the one-particle-irreducible ones. The one-particle-
irreducible components ofDnsk ,0d, Snsk ,0d, must be ex-
tracted fromDnsk ,0d. The termsDnsk ,0d have the behavior
Dnsk ,0d<Fnk

2 for small uk u. It is straightforward to verify
that the termF1 is zero. This means therefore that there is no
contribution toOsld in the asymptotic single particle diffu-
sion constantke. Examining Fig. 2 we find that

D2sk,0d =
s2pdDsN−2d

kVN l2E
RDN

dq
k ·qsk − qd

sk − qd2 c0sqdc0s− qd.

s29d

The potential term in the integrand may be expressed using
Eq. (11) as

c0sqdc0s− qd = o
i, j

o
k,l

ṼsqidṼs− qkddsqi + q jddsqk + qld

3 p
r¹hi,jj

dsqrd p
s¹hk,lj

dsqsd. s30d

One must keep in mind that only terms with nonzeroq can
contribute (one can imagine an additional term +s in the
denominator for smalls which is taken to zero at the end of
the calculation). The only terms in Eq.(30) which have non-
zero momentum are those where the pairsi , jd=sk, ld. In ad-
dition, the computation is simplified if one assumesk r =0 for
r .1. Clearly the coefficient ofk1

2 in kk2−Ssk ,0d is the

self-diffusion constant of particle 1 which is also the self-
diffusion constant of any given particle. Hence for the pur-
poses of the calculation ofke we can restrict ourselves to the
casek =sk1,0 ,0, . . . ,0d. In this case, the only choices of the
particle indices giving a nonzero diagram arei =k=1 and j
= l due to the scalar productk ·q on the first vertex. There are
thusN−1 identical nonzero diagrams with two vertices. For
notational simplicity in the following we will writek =k1
PRD. All the choices are equivalent to choosingq1=q, q2
=−q andqr =0 for r .2 where againqPRD. In the resulting
integral there are repeated delta functions for the termsr =s
and also a doubledsqi +q jd. We use the relation forqPRD,

d2sqd = dsqd
V

s2pdD . s31d

The result forD2skd is thus

D2sk,0d =
l2r

k
E

RD

dq

s2pdD

k ·qs2q − kd ·q

sk − qd2 + q2 Ṽsqd2. s32d

The above diagram is also clearly one-particle-irreducible
and henceF2=E2 thus giving

E2 =
1

2

l2r

kD
E

RD

dq

s2pdDṼsqd2 =
1

2

l2r

kD
E

RD
dxV2sxd. s33d

The diagram givingD3sk ,0d has the value

D3sk,0d = −
s2pdDsN−3d

k2VN l3E
RDN

dqdp

3
k ·qsk − qd · sq + pdsk + pd ·p

sk − qd2sk + pd2

3c0sqdc0spdc0s− q − pd. s34d

To simplify the counting of diagrams with nonzero momen-
tum let us consider the general expansion ofc0sq1d¯c0sqnd
in a diagram withn vertices. From Eq.(11) a given term on
expanding then-fold sum over pairs has the form

Ai1j1
sq1d ¯ Ainjn

sqnd. s35d

Any diagram where the momentumqv flowing into the ver-
tex v is zero is due to the presence of the scalar product with
qv at each vertex in the Feynman rules. The momentum
flowing into the vertexv in the above decomposition over
pairs iss0,0,¯qi¯−qi¯0,0d i.e., it hasqi at the particle
position i and −qi at the particle positionj in the total mo-
mentum vector. This is shown diagrammatically in Fig. 3.

Each horizontal line corresponds to a vertex and the hori-
zontal coordinates are given by the pointssiv , jvd. Each line
must have a nonzero momentum, thusqvÞ0. However, the
sum of the momenta down each column must also be zero.
Hence each coordinateiv must appear on at least two lines in
order to give a diagram which is nonzero. In Fig. 4 one
example of the equivalent nonzero diagram contribution to
E2 is shown. The three types of diagrams which give nonzero
contributions toF3 are shown in Fig. 5. The diagrams of type
1 have a multiplicity ofN−1 and have the same particle pair
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on each line. For the diagrams of type 2 and 3 there aresN
−1dsN−2d diagrams of the precise form shown in the dia-
gram. This is because there areN−1 choices for the first pair
s1,2d andN−2 choices of the pairs2,3d (that is to say the
particle number 3) shown on the second line. The choice of
the last(third) pair is not free by momentum conservation.
Due to the presence of a delta functiondsovqi

vd for each
column which is automatically satisfied when all theqi

v are
zero, each empty column carries a factor ofV/ s2pdD. Hence
a diagram withk empty columns has a factorfV/ s2pdDgk. In
diagrams of type 1,k=N−2 and in diagrams of type 2 and 3,
k=N−3.

The contribution of diagrams of type 1 toD3sk ,0d is thus

D3
s1dsk,0d = −

l3r

k2 E
R2D

dq

s2pdD

dp

s2pdD

3
k ·qfs2q − kd · sp + qdgfsk + 2pd ·pg

fsk − qd2 + q2gfsk + pd2 + p2g

3ṼsqdṼspdṼsp + qd, s36d

which gives

F3
s1d = −

l3r

2Dk2E
R2D

dq

s2pdD

dp

s2pdDṼsqdṼspdṼsp + qd

3S1 −
sp ·qd2

p2q2 D . s37d

The contribution from diagrams of type 2 and 3 is

F3
s2d = −

3l3r2

4Dk2E
RD

dq

s2pdDṼsqd3. s38d

These diagrams contributing toF3 are also one-particle-
irreducible and hence toOsl3d we obtain

ke

k
= 1 −

rl2

2Dk2E
RD

dq

s2pdDṼsqd2

+
rl3

2Dk3E
R2D

dq

s2pdD

dp

s2pdDṼsqdṼspdṼsq + pd

3S1 −
sp ·qd2

p2q2 D +
3r2l3

4Dk3E
RD

dq

s2pdDṼsqd3. s39d

Hence the ratioke/k is expressed as a perturbation expan-
sion in 1/T. Notice here that there are more lines than rows
in the diagrams of the pair development, which means that a
finite number of diagrams contribute to any given order of
the 1/T expansion, whereas an infinite number of diagrams
must be summed in order to compute any order in ther

FIG. 3. Diagrammatic representation of the vertex momentum
present in one term of the pair development of a product ofc0’s.

FIG. 4. Diagram in the pair development contributing toE2.

FIG. 5. Diagrams in the pair development contributing toE3

(top, type one; middle, type 2; and bottom, type 3).
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expansion. A diagram withn lines andm nonempty columns
is of orderrm−1sl /kdn=rm−1bn, thus a systematic double ex-
pansion inr and b may be performed. We note that in Eq.
(39) the leading order term inb which is of orderrb2 recov-
ers the weak coupling approximation. It is clear that the
weak coupling approximation is not valid at low densities if
the temperature is too low. The calculation ofke to first order
in r involves summing all the diagrams which have just two
columns occupied. These diagrams, which are all one-
particle-irreducible, can be resummed via an integral equa-
tion [24] and one can show that the resulting expression for
ke is the same as that given by the relaxation method applied
to the effective two-body problem as expounded in[23].

Consider a diagram withv vertices and itsc0 pair expan-
sion. If the firstv8 vertices do not contain more than one-
particle-index in common with thev−v8 remaining vertices
then the momentum flowing between the vertexv andv+1 is
zero(or k if the column in common is the first one) and thus
the diagram is zero(or one particle reducible). In other
words, all diagrams with disconnected loops such as the one
shown in Fig. 6 have a zero value or are one-particle-
reducible and thus give no contribution toke.

As an example, we consider potentials of the form

Vsr d =
e

s2pdD/2expS−
r 2

2r0
2D , s40d

which has been recently proposed to model the effective in-
teraction between coiled polymers[25] at weak dilution. The
Fourier transform ofVsr d is then given by

Ṽsqd = er0
DexpS−

q2r0
2

2
D . s41d

With this interaction potential and settinge=r0=1 we find
from Eq. (39)

Fq
spd = apqr

pT−q, s42d

where the first nonzeroapq’s are

a12 = −
1

2D+1DpD/2 ,

a13 =
1

2D
S 1

3D/2 −
KsDd + DKsD + 2d

s2pdD D ,

a23 =
3

4Ds6pdD/2 ,

KsDd =E
0

1/Î3

dx
xD−1

1 + x2 . s43d

Clearly this 1/T expansion is valid only at very high tem-
perature. It can be improved in several manners. One could
compute higher orders in this expansion, which should give
better agreement with the simulations, but, however, the ex-
pansion will inevitably break down at lowT. Alternatively,
one could try to sum infinite subseries in order to build ap-
proximate nonperturbative schemes. As mentioned above
one approach is to try and resum the diagrams to obtain
results exact for allb to orderr. Here we shall concentrate
on another resummation involving only one-loop diagrams.

III. ONE-LOOP ANALYSIS

A. Simple one-loop contribution

Here we will focus on the class of one-loop diagrams.
These diagrams are those which involve only one momen-
tum integral. In this case, there are two dots on each occu-
pied line or row and these diagrams are all one-particle-
irreducible. In addition from the discussion in the previous
section, these diagrams are the dominant ones in the limit
whererb=c (with c a constant) and r→`, or equivalently
whererb=c andb→0. The dimensionless form ofc would
in fact be c8=rr0

Dbe, where r0 is the characteristic length
scale of the potential ande its energy. As before, we write
k =k1PRD. The interesting point about this limit is that the
(high temperature) statics of the model can also be evaluated
[28], only chain diagrams in the virial expansion are retained
in this limit. In electrolytic systems the Debye-Hückel ap-
proximation is recovered on the retention of only chain dia-
grams[29] and hence it is interesting that one can have a
theory ofke for electrolyte systems which is compatible with
the Debye-Hückel approximation which has proved so useful
in the study of their static properties.

The typical one-loop diagrams can be reduced to the stair-
caselike diagrams shown in Fig. 7 by relabeling the particles.
We note here that as we are summing an infinite number of
diagrams one must be careful not to include the same particle
twice in the same diagram as this will make the diagram
two-loop. Hence for a finite system one cannot have a one-
loop diagram with more thanN vertices as it will include at
least one particle[other than the tracer particle(1)] at least
three times, meaning that the diagram can have at least two
independent momenta flowing through it. In this case the
counting of the one-loop diagrams withn vertices wheren is
of order N will be different. We have, however, taken the

FIG. 6. Example of a diagram with disconnected loops in the
pair development. Here theq loop is disconnected from thesp ,r d
loop.
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limit N→` already and hence this does not cause us any
problems in the region where the power series giving the
one-loop result is convergent.

In constructing a one-loop diagram at any level one must
insert two points, one of which must coincide with one of the
two unpaired(in the vertical direction) points above. The
leftmost point of the new pair can either be paired with the
rightmost of the two unpaired points above or it can be
paired with the leftmost of the two unpaired points above,
this gives a crossing. Clearly the first crossing must be back
to the first column. Each diagram thus hasp crossings where
pP f1,n−1g. If there is only one crossing then it must occur
at level n corresponding to a staircase diagram with one
crossing at the last line. Up to particle relabeling there is
only one such diagram and its contribution is

b1snd =
2n − 3

2n−1D

rn−1s− ldn

kn−1 E
RD

dq

s2pdDṼsqdn. s44d

If n.2 andp.1 then the first crossing must occur at the
level n1P f2,n−1g. At the level n1+1 the next two points
can either cross or not cross just until the leveln where the
diagram most close. There are thus 2n−1−n1 topologically dis-
tinct diagrams with the same first crossing point atn1. It is
easy to see that these diagrams depend only on the position
n1 of the first crossing(i.e., the second occurrence of the
particle 1) and are given by

b2sn1,nd =
n1 − 2

2n−2D

rn−1s− ldn

kn−1 E
RD

dq

s2pdDṼsqdn. s45d

Hence, taking into account all the multiplicities, the con-
tribution of all the diagrams withn.2 lines is

bsnd = b1snd + o
n1=2

n−1

2n−n1−1b2sn1,nd

=
1 − 21−n

D

rn−1s− ldn

kn−1 E
RD

dq

s2pdDṼsqdn. s46d

At n=2 the above agrees with the result of Eq.(33), and

hence the above formula is valid for allnù2. Performing the
sum we find the one-loop contributions to be

ke
sone-loopd − k = − o

n

bsnd

= −
rl2

Dk
E

RD

dq

s2pdDṼsqd2

31 1

1 +
rl

k
Ṽsqd

−
1

2

1

1 +
rl

2k
Ṽsqd2 . s47d

The above may be conveniently rewritten in terms ofc
=rl /k,

ke
sone-loopd = kF1 +

1

rD
Xgscd − 2gS c

2
DCG s48d

=kF1 +
b

cD
Xgscd − 2gS c

2
DCG , s49d

where

gscd =E
RD

dq

s2pdD

cṼsqd

1 + cṼsqd
. s50d

From the previous discussions the corrections to Eq.(49) are
of the form

ke = ke
sone-loopd + b2s2scd + b3s3scd ¯ . s51d

In the particular case of the potential given by Eq.(40),
we find that inD dimensions

gscd =
1

s2pdD/2GSD

2
DE0

`

du
c exps− uduD/2−1

1 + c exps− ud
. s52d

In the caseD=2, we obtain

ke
sone-loopd = k +

k

4pr
Flns1 + rbd − 2 lnS1 +

rb

2
DG .

s53d

However, this expression becomes negative whenb is large,
although this is outside the range where the approximation
involved here is valid. We also see thatke is a nonmonotonic
function ofr, having a minimum value at some valuerc but
increasing up tok again on takingr very large, this is a
consequence of the use of a soft potential, at high densities
the particles all overlap but the energy change in moving to
overlap with one particle rather than another is zero. The
effective potential seen by the particles is almost flat and
hence there is only a small effect on the particle diffusion.

B. One-loop renormalization group

We have seen in the preceding section that the one-loop
calculation ofke predicts that the diffusion constant can van-
ish at finite temperature. The same calculation predicts a van-

FIG. 7. Example of a staircase diagram contributing to the one-
loop expansion.
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ishing diffusion constant for the problem of diffusion in a
Gaussian random potential with short range correlations.
This transition can be shown to be absent in finite dimen-
sions via exact results in one and two dimensions, numerical
simulations, and general arguments based on the fact that the
system has a finite correlation length. In order to go beyond
the simple one-loop contribution, one can look at how the
effect of the interactions on the diffusion constant propagates
from short to large length scales. This can be achieved by the
renormalization-group method. This approach has been
proven to be very accurate in the calculation of the effective
diffusivity in random media and removes the fictitious van-
ishing of ke predicted by simple perturbation theory. Indeed,
in dimension three the one-loop renormalization-group
analysis provides a very good quantitative approximation of
the effective diffusivity of a particle in a Gaussian random
potential[30–34], and the exact result in dimensions one and
two [35]. We therefore apply the same technique to the prob-
lem of interacting particles studied here. The potentialf is
decomposed into long and short scale components,

f,sxd =E
uqu,L

dq

s2pdNDf̃sqdexpsiq ·xd,

f.sxd =E
uqu.L

dq

s2pdNDf̃sqdexpsiq ·xd, s54d

whereL is a running cutoff. One then integrates out the high
momentum componentf. perturbatively to find an effective
theory on length scales greater than 1/L. One then makes a
self-similarity ansatz which means only keeping interactions
that were in the original problem and hence the only param-
eters which change arek and l (as well as the potential
which just has the higher Fourier modes removed). One
therefore has a running diffusion constantksLd and a run-
ning coupling to the gradient fieldlsLd. The effective diffu-
sion constant is then given byke=ks0d. The flows of these
couplings can be computed from the one-loop diagrams. In
addition it can be shown by general arguments[35] that

ksLd
lsLd

=
k

l
= T, s55d

that is to say that the Einstein relation or fluctuation dissipa-
tion relation is satisfied by the renormalized theory at each
step of the renormalization. This renormalization is only
valid for the low-momentum component of the remaining
drift ¹f, and a possible improvement to the calculation here
would be to functionally renormalize the fieldf,, which
amounts to introducing new interactions generated by the
renormalization procedure(this approach has been applied to
diffusion in an incompressible quenched Gaussian velocity
field [36]). Using the one-loop diagrams calculated in the
previous section we find the flow equation forksLd is

dksone-loopdsLd
dL

= −
rlsLd2

DksLds2pdDSD−1L
D−1ṼsLd2

31 1

1 +
rlsLd
ksLd

ṼsLd
−

1

2

1

1 +
rlsLd
2ksLd

ṼsLd2 , s56d

whereSD−1 is the area of the unit sphere ofRD. Inserting Eq.
(55) into Eq. (56) one gets

dksone-loopdsLd
dL

= −
rlsLd

DTs2pdDSD−1L
D−1ṼsLd2

31 1

1 +
r

T
ṼsLd

−
1

2

1

1 +
r

2T
ṼsLd2 .

s57d

Integrating outL down from ` to 0 and using the initial
conditionsfks`d ,ls`dg=sk ,ld, we find the final expression
for the effective diffusion constant is simply

ke
sone-loop RGd = k expSke

sone-loopd

k
− 1D . s58d

Now looking atke
sone-loopd given in Eq.(47), the value of the

self-diffusion constant given by the self-similarity ansatz
leads to several comments.

The temperature-density dependence ofke/k is of the
form hsr /Td /T. Hence the phase diagram in thesT,rd plane
obtained from it consists of regions separated by straight
lines crossing at the points0,0d. However, the Langevin ap-
proach studied here is in most physical situations a coarse
grained approach, in which case the potentialV has to be
replaced by an effective potentialVeffsxd=Veffsx ,c,rd which
depends on the temperature and possibly the density. In this
case, the phase diagram will be more complicated.

If the Fourier transformṼsqd of the potential has an ab-
solute minimum ofnegative valueat some nonzero valueq* ,
then the diffusion constant goes to zero when the tempera-

ture reachesT* =−rfṼsq*d−1g from above. Keeping the den-
sity fixed loweringT amounts to increasingc. The integral

I =E dq
cṼsqd

1 + cṼsqd
s59d

diverges atc=c* =r /T* , and nearc* the denominator of the
integrandI behaves as

h1 + sc* − dcdfVsq*d + V,qqsq*ddq2/2gj

= f− dcVsq*d + V,qqsq*ddq2/2g, s60d

where we have assumed thatV is twice differentiable about
q* , i.e., the minimum is not a cusp. In this case the relaxation
time diverges atT* as
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t , expS A
ÎT − T* D . s61d

However, one could conceive thatV is an effective potential
coming from a coarse grained approach to a microscopic
model and that it may thus have a dependence onr or T.
Alternatively one might argue that diagrams of lower order
in r dress the effective interaction leading to an additionalr
or T dependence inV. The assumption of an effectiveT
dependence onV will modify the way in which the diffusion
constant vanishes. We note here that the idea of an effective
T dependence of the effective interaction arises in the ran-
dom phase approximation[29] where the bare two particle
interaction Vsr d is replaced by −Tcsr d, where csr d is the
direct correlation function. In this scenario, if we keepr
fixed, the denominator of the integrandI now behaves as

h1 + sc* − dcdfVsq* ,c*d − V,csq* ,c*ddc + V,ccsq* ,c*ddc2/2

+ V,qqsq* ,c*ddq2/2 + V,qcsq* ,c*ddcdqgj

< fdc/c* − c*V,csq* ,c*ddc − V,qcsq* ,c*ddcdqg. s62d

By definition we have thatV,csq* ,c*d,0 as the minimum of
Vsq,cd arrives at −1/c from above. Hence in this case the
relaxation time diverges as

t , expS A

T − T* D , s63d

which is the Vogel-Fulcher-Tammann law. From the above
analysis we see that if the dependence ofVsq,cd on c is weak
near sq* ,c*d then one would expect to see a crossover be-
tween the behavior oft between Eq.(61) for uT−T* u,1, to
the behavior Eq.(63) when uT−T* u!1. The two scenarios
above correspond to the behavior of the so-called fragile
glasses. In the scenario where the denominator of the inte-
grand I does not diverge then the diffusion constant only
vanishes atT=0 and it is possible that such cases correspond
to strong glasses; however, generally the precise behavior of
ke as T goes to zero will depend on the form ofV, an ex-
ample of which can be seen from Eq.(53) resummed in the
renormalization-group approximation. Ifq* =0 then the be-
havior is different and depends on the spatial dimensionD.
Finally as mentioned in the previous section on the one-loop
expansion, precisely atT=T* one expects thatke depends
explicitly on N.

In the corresponding static approximation[28] it was
shown that the structure function is given by

Ssqd =
1

1 + cṼsqd
, s64d

although the authors of[28] expressS in terms of the Mayer
function of the potentialV, the result is the same at the order
of accuracy of the calculation. We see that the condition
above for a dynamic transition, defined by the vanishing of
ke, coincides in the same approximation scheme by the ap-
pearance of a diverging correlation length and a second order
phase transition. However, as pointed out in[28] this appar-
ent second order transition may be preceded by a first order

freezing transition when the free energy of the ordered crys-
tal phase is lower than that of the free energy of the liquid
phase described by the terms in the chain resummed virial
expansion. The analysis above thus may apply to a super-
cooled liquid and the temperatureT* is the limit of the ther-
modynamic stability of the liquid phase. There has been
some experimental evidence of a diverging correlation length
at the Vogel-Fulcher-Tammann temperatureT* from the
study of the dielectric susceptibility of supercooled liquids
[37], though these results seem at odds with earlier numeri-
cal studies[38,39] studying this question.

IV. COMPARISON WITH MONTE CARLO SIMULATIONS

In order to test the accuracy of the different schemes ex-
plained above, we have carried out Monte Carlo simulations
of particles interacting via the potential(40) in two dimen-
sions. Here we have fixed the density at the valuer=0.5, and
the number of particles atN=10 000. We have evaluated the
macroscopic diffusion constant by using Eq.(3). The result is
shown in Fig. 8 and compared to the evaluation from Eqs.
(42) and (43), for values of the interaction in the range
f0,7.5g.

From Fig. 8 we see that theb expansion is valid only at
very smallb, however, the one-loop renormalization-group
(RG) result is much more near the simulated values of the
diffusion constant over quite a broad range. We expect that a
RG analysis including more interactions, for example, in-
cluding functional renormalization of the interactionV,
would provide better agreement. The two-loop diagrams in-
clude the one indicated as type 1 in Fig. 5. The effect of the
addition of this diagram to the one-loop RG calculation is
plotted in Fig. 8 as well. The other diagrams of the two-loop
expansion are at least of orderb4. Hence the good agreement

FIG. 8. Microscopic diffusion constant as a function of the in-
teraction from different approximation schemes[(a), (b), (c)], com-
pared to the one measured in Monte Carlo simulations: 1/T expan-
sion from Eqs.(42) and (43) (a), one-loop renormalization-group
(b), one-loop renormalization-group + first two-loops diagram(c),
and Monte Carlo simulations(d).
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observed indicates that the two-loop calculation which in-
cludes additional interactions will improve the approxima-
tion to the diffusion constant. We note that the value of the
density used heresr=0.5d is not very small, and the reason-
ably good agreement obtained is a hint that the RG calcula-
tion catches ther dependence of the diffusion constant in the
case of soft or bounded potentials.

V. CONCLUSION

We have developed a perturbative expansion of the self-
diffusion constant of Langevin interacting particles. The ex-
pansion is a weak coupling expansion which is suitable for
soft or bounded interaction potentials. The perturbation ex-
pansion can be seen to be a double expansion inb andr, and
we have shown how it can be dealt with diagrammatically.
As an example of a partial resummation of this expansion, a
one-loop renormalization group analysis has been carried out
and tested on a simple form of the interaction and compared
to numerical simulations. It was found that this calculation
gives considerably better agreement than the straight expan-
sion to Osb3d. In addition, in some cases the one-loop RG

calculation predicts a divergence of the relaxation time(or
vanishing of the self-diffusion constant) at some positive
temperature. However, we have seen that when such a dy-
namic transition occurs it is accompanied by a diverging cor-
relation length in the statics when one uses equivalent ap-
proximations in the statics and dynamics. The possible forms
of the divergence of the relaxation time have been discussed
and it has been argued that the Vogel-Fulcher-Tammann law
emerges under relatively weak additional assumptions to the
basic calculation carried out here. The two-loop calculation
should provide a better quantitative approximation for the
diffusion constant, but it would also indicate the form or
robustness of the divergence of the relaxation time as higher-
loop contributions are taken into account, this calculation is
in progress. Various other resummation methods may be de-
veloped on the systematic perturbation expansion expounded
here, as we have mentioned earlier the series may be re-
summed at orderr to recover existing low density results,
one may use self-consistent perturbation theory and also ex-
plore renormalization-group schemes based on calculating
the effect of integrating out the effect of a small density of
other particles rather than the Fourier modes of the interac-
tion potential.
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